

ESCON Module 50/5

Documentation Hardware

TABLE DES MATIÈRES

1	INFORMATIONS GÉNÉRALES		
	1.1 1.2 1.3	À propos de ce document	7
2	SPÉCIFICATION	ONS	9
	2.1	Caractéristiques techniques	9
	2.2	Normes	12
3	CONFIGURAT	TION	13
	3.1	Règles générales en vigueur	13
	3.2	Détermination de l'alimentation électrique requise	14
	3.3	Connexions	15
	3.4	Potentiomètre	25
	3.5	Affichages d'état	26
4	CÂBLAGE		27
	4.1	Moteurs DC	28
	4.2	Moteurs EC	31
5	GUIDE DE CO	NFIGURATION DE LA CARTE MÈRE	33
	5.1	Exigences concernant les composants d'autres fournisseurs	33
	5.2	Directives relatives à la configuration	
	5.3	Empreinte THT	37

À LIRE IMPÉRATIVEMENT EN PREMIER

Ces instructions sont destinées au personnel technique qualifié. Avant de démarrer une activité quelconque, il convient ...

- de lire et de comprendre le présent manuel, et
- de suivre les instructions qu'il contient.

Le module ESCON Module 50/5 est considéré comme une quasi-machine conformément à la Directive européenne 2006/42/CE, article 2, paragraphe (g) et il est destiné à être incorporé dans une autre machine, une autre quasi-machine ou un autre équipement, ou alors à leur être ajouté.

Par conséquent, il est interdit de mettre l'appareil en service...

- avant de s'être assuré que l'autre machine ou le système dans lequel l'appareil doit être incorporé, répond aux exigences de la directive européenne relative aux machines;
- avant que l'autre machine réponde à toutes les exigences relatives à la protection de la sécurité et de la santé des personnes;
- avant que toutes les interfaces requises soient établies et les exigences spécifiques à celles-ci soient remplies.

5.4	Affectation des broches	38
5.5	Caractéristiques techniques	38
5.6	Schéma coté	38
5.7	ESCON Module Motherboard (438779)	38
5.8	Pièces de rechange	52
LISTE DES FIGUR	≣S	53
LISTE DES TABLE	AUX	54
INDEX		55

• Page laissée vierge • •

1 INFORMATIONS GÉNÉRALES

1.1 À propos de ce document

1.1.1 Domaine d'utilisation

Le présent document est destiné à vous familiariser avec le servo-contrôleur ESCON Module 50/5. Il décrit les opérations nécessaires pour une installation et/ou une mise en service conformes et sûres. Le respect de ces instructions...

- · permet d'éviter les situations dangereuses,
- · réduit considérablement la durée de l'installation et/ou de la mise en service,
- augmente la durée de vie de l'équipement décrit ainsi que sa fiabilité.

Ce document présente les performances et les spécifications de l'appareil, les informations concernant les normes à respecter, les détails relatifs aux connexions et à l'affectation des bornes ainsi que des exemples de câblage. Il contient également un guide de conception de la carte mère ainsi que des indications précises concernant l'«ESCON Module Motherboard» disponible en option.

1.1.2 Groupe cible

Ce document est destiné à un personnel qualifié dûment formé et expérimenté. Il contient les informations nécessaires à la compréhension et à la réalisation des opérations requises.

1.1.3 Utilisation

Il convient de prendre en compte la notation et les codages utilisés dans la suite du document.

Notation	Signification
(n)	renvoie à un composant (par ex. à son numéro de commande, à sa position dans une nomenclature, etc.)
→	synonyme de «voir», «voir aussi», «tenir compte de» ou «passer à»

Tableau 1-1 Notation utilisée

1.1.4 Symboles & signes

Les symboles et signes suivants sont utilisés dans ce document.

Туре	Symbole	Signification		
		DANGER	Indique une situation dangereuse à venir. Le non-respect de cette indication va entraîner des blessures graves voire mortelles.	
Consigne de sécurité	(typique)	AVERTISSEMENT	Indique une situation potentiellement dangereuse. Le non-respect de cette indication peut entraîner des blessures graves voire mortelles.	
		ATTENTION	Indique une situation éventuellement dangereuse ou attire l'attention sur une pratique peu sûre. Le non-respect de cette indication peut entraîner des blessures .	
Activités interdites	(typique)	Indique une activité dangereuse. Par conséquent: elle est interdite.		
Opération obligatoire	(typique)	Indique une opération indispensable. Par conséquent: cette opération est obligatoire.		
		Exigence/ Indication/ Remarque	Indique une opération indispensable pour pouvoir poursuivre ou qui informe au sujet d'un certain aspect à respecter.	
Information		Méthode recommandée	Indique une recommandation ou une proposition concernant la manière de poursuivre les opérations.	
	**	Détérioration	Indique des opérations permettant d'empêcher les endommagements éventuels du matériel.	

Tableau 1-2 Symboles & signes

1.1.5 Marques déposées et noms de marques

Afin de ne pas entraver la lisibilité des documents, les noms de marques déposées accompagnés de la marque sont mentionnés une seule fois dans la liste ci-dessous. Cela implique évidemment que les noms de marques (la liste n'est pas exhaustive ni exclusive) sont protégés par droits d'auteur et/ou de propriété intellectuelle, même si le symbole correspondant n'apparaît pas dans le reste du document.

Nom de marque Propriétaire de la marque	
Littelfuse® SMD NANO2®	© Littelfuse, USA-Chicago, IL
Windows®	© Microsoft Corporation, USA-Redmond, WA

Tableau 1-3 Marques déposées et noms de marques

1.1.6 Copyright

Le présent document est protégé par des droits d'auteur, même sous forme d'extrait. Toute réutilisation de ce document, qu'il s'agisse d'une reproduction, d'une traduction, de la reproduction sur microfilm ou d'un autre traitement électronique dépassant le cadre stricto sensu de la protection des droits d'auteur, est interdite sans autorisation écrite de et peut faire l'objet de poursuites judiciaires.

© 2021 maxon. Tous droits réservés. Sous réserve de modifications.

CCMC | ESCON Module 50/5 Documentation Hardware | Édition 2021-08 | DocID rel9053

maxon motor ag Brünigstrasse 220 CH-6072 Sachseln

+41 41 666 15 00 www.maxongroup.com

1.2 À propos de l'appareil

L'ESCON Module 50/5 est un servo-contrôleur MLI puissant et compact à 4 quadrants destiné à la commande performante de moteurs avec balais, à courant continu et excitation par aimant permanent, et de moteurs EC sans balais de jusqu'à 250 W environ.

Les modes de fonctionnement disponibles – régulateur de vitesse, variateur de vitesse et régulateur de courant – répondent aux exigences les plus extrêmes. Le ESCON Module 50/5 est conçu pour être piloté par une valeur de consigne analogique. Il présente des fonctions complètes qui utilisent des entrées et des sorties analogiques et numériques.

Ce module OEM miniaturisé s'intègre parfaitement dans des applications clients complexes. Une carte mère appropriée est à disposition pour la première mise en service.

L'interface graphique «ESCON Studio» pour PC Windows sert à configurer l'appareil par le biais de l'interface USB.

La version actuelle du logiciel ESCON (ainsi que la dernière édition de la documentation) sont téléchargeables sur Internet, à l'adresse → http://escon.maxongroup.com.

1.3 À propos des consignes de sécurité

- Vérifier que les consignes "À LIRE IMPÉRATIVEMENT EN PREMIER" à la page A-2 ont bien été lues.
- Ne jamais effectuer de travaux sans disposer des connaissances requises en la matière (→Chapitre "1.1.2 Groupe cible" à la page 1-5).
- Consulter le → Chapitre "1.1.4 Symboles & signes" à la page 1-6 qui contient les explications nécessaires à la compréhension des symboles utilisés.
- Respecter la réglementation en vigueur dans le pays et/ou sur le lieu d'exploitation de l'appareil en matière de prévention des accidents, de protection du travail et de protection de l'environnement.

DANGER

Haute tension et/ou électrocution

Tout contact avec des fils conducteurs de tension peut entraîner des blessures graves voire mortelles.

- Tous les câbles du réseau doivent être considérés comme conducteurs de tension sauf en présence de preuves contraires.
- S'assurer qu'aucune des extrémités du câble n'est reliée à une alimentation en tension.
- S'assurer qu'il est impossible d'activer l'alimentation en tension tant que les travaux ne sont pas terminés
- Respecter les instructions d'isolation et de mise hors service du moteur.
- Vérifier que tous les interrupteurs sont protégés de tout actionnement accidentel et qu'ils sont identifiés nommément.

Exigences

- Vérifier que tous les composants raccordés sont installés conformément aux règlements en vigueur localement.
- Garder à l'esprit qu'un appareil électronique ne peut par principe être considéré comme infaillible. Il convient donc d'équiper la machine/l'équipement d'un dispositif de surveillance et de sécurité indépendant. Si, pour une raison quelconque, la machine/l'équipement était commandé de manière non conforme, si la commande devait subir un dysfonctionnement, si un câble devait rompre ou être déconnecté, etc., il conviendrait alors de commuter le dispositif d'entraînement complet en un mode de fonctionnement sûr et de le maintenir dans ce mode.
- Attention, il est interdit à l'utilisateur d'entreprendre la moindre réparation sur les composants fournis par maxon.

Composant sensible aux décharges électrostatiques (CSDE)

- Porter des vêtements isolant des décharges électrostatiques.
- Manipuler l'appareil avec la plus grande prudence.

2 SPÉCIFICATIONS

2.1 Caractéristiques techniques

Tension nominale de service +V _{CC} 1050 VDC Tension de service absolue +V _{CC min} / +V _{CC max} Tension de sortie (max.) 0,98 x +V _{CC} Courant de sortie l _{cont} / I _{max} (<20 s) 5 A / 15 A Fréquence de modulation de largeur d'impulsion 53,6 kHz Fréquence d'échantillonnage régulateur de courant PI Fréquence d'échantillonnage régulateur de vitesse PI Rendement maximum 98% Vitesse max. moteur DC limitée par la vitesse maximum admise (moteur) et la tension maximum de sortie (contrôleur) Vitesse max. moteur EC 150 000 tr/min (1 paire de pôles) Self de lissage intégré — Entrée analogique 1 Entrée analogique 2 Sortie analogique 2 Sortie analogique 2 Entrée numérique 1 Sortie analogique 2 Entrée numérique 1 Entrée numérique 1 Entrée numérique 2 Entrée numérique 2	
Tension de sortie (max.) Courant de sortie I cont / I max (<20 s) Fréquence de modulation de largeur d'impulsion Fréquence d'échantillonnage régulateur de courant PI Fréquence d'échantillonnage régulateur de vitesse PI Rendement maximum Vitesse max. moteur DC Vitesse max. moteur EC Self de lissage intégré Entrée analogique 1 Entrée analogique 2 Sortie analogique 2 Entrée numérique 2 Entrée numérique 2 Fréquence d'échantillonnage régulateur de vitesse maximum admise (moteur) et la tension maximum de sortie (contrôleur) Vitesse max. moteur BC Self de lissage intégré	
Courant de sortie I _{cont} / I _{max} (<20 s) 5 A / 15 A Fréquence de modulation de largeur d'impulsion Fréquence d'échantillonnage régulateur de courant Pl Fréquence d'échantillonnage régulateur de vitesse Pl Rendement maximum 98% Vitesse max. moteur DC Vitesse max. moteur DC Ilimitée par la vitesse maximum admise (moteur) et la tension maximum de sortie (contrôleur) Vitesse max. moteur EC 150 000 tr/min (1 paire de pôles) Self de lissage intégré — Entrée analogique 1 Entrée analogique 2 Sortie analogique 2 Sortie analogique 2 Entrée numérique 2 Entrée numérique 1 Entrée numérique 1 Entrée numérique 2 Entrée numérique 2 Entrée numérique 2 Entrée numérique 2	
Fréquence de modulation de largeur d'impulsion 53,6 kHz	
d'impulsion Caractéristiques électriques Fréquence d'échantillonnage régulateur de courant PI Fréquence d'échantillonnage régulateur de vitesse PI Rendement maximum 98% Vitesse max. moteur DC Vitesse max. moteur EC Self de lissage intégré Entrée analogique 1 Entrée analogique 2 Sortie analogique 2 Entrée numérique 1 Entrée numérique 1 Entrée numérique 2 Entrée numérique 2 Sortie analogique 2 Entrée numérique 2 Entrée numérique 2 Fréquence d'échantillonnage régulateur 53,6 kHz Fréquence d'échantillonnage régulateur de voitesse maximum admise (moteur) et la tension maximum de sortie (contrôleur) Vitesse max. moteur DC 150 000 tr/min (1 paire de pôles) Frésolution 12 bit; -10+10 V; différentielle Frésolution 12 bit; -4+4 V; par rapport à GND	
régulateur de courant PI Fréquence d'échantillonnage régulateur de vitesse PI Rendement maximum 98% Vitesse max. moteur DC Vitesse max. moteur EC Self de lissage intégré Entrée analogique 1 Entrée analogique 2 Sortie analogique 2 Entrées et sorties Fréquence d'échantillonnage 5,36 kHz 1imitée par la vitesse maximum admise (moteur) et la tension maximum de sortie (contrôleur) Vitesse max. moteur EC 150 000 tr/min (1 paire de pôles)	
régulateur de vitesse PI Rendement maximum 98% Vitesse max. moteur DC limitée par la vitesse maximum admise (moteur) et la tension maximum de sortie (contrôleur) Vitesse max. moteur EC 150 000 tr/min (1 paire de pôles) Self de lissage intégré Entrée analogique 1 Entrée analogique 2 Sortie analogique 2 Fortie analogique 2 Entrée numérique 2 Entrée numérique 1 Entrée numérique 2 Fatile par la vitesse maximum admise (moteur) et la tension maximum de sortie (contrôleur) Tésolution (1 paire de pôles)	
Vitesse max. moteur DC limitée par la vitesse maximum admise (moteur) et la tension maximum de sortie (contrôleur) Vitesse max. moteur EC 50 000 tr/min (1 paire de pôles) Self de lissage intégré Entrée analogique 1 Entrée analogique 2 Sortie analogique 2 Entrée analogique 2 Fortie analogique 2 Entrée numérique 1 Entrée numérique 1 Entrée numérique 2 Limitée par la vitesse maximum admise (moteur) et la tension maximum de sortie (contrôleur) Tésolution (1 paire de pôles) résolution 12 bit; -10+10 V; différentielle Fortie analogique 2 Entrée numérique 1 Entrée numérique 2 Entrée numérique 2	
Vitesse max. moteur DC maximum de sortie (contrôleur) Vitesse max. moteur EC 150 000 tr/min (1 paire de pôles) Self de lissage intégré – Entrée analogique 1 résolution 12 bit; -10+10 V; différentielle Sortie analogique 2 résolution 12 bit; -4+4 V; par rapport à GND Entrée numérique 1 +2,4+36 VDC (R _i = 38,5 kΩ)	
Self de lissage intégré Entrée analogique 1 Entrée analogique 2 Sortie analogique 1 Sortie analogique 2 Entrées et sorties Entrées et sorties Self de lissage intégré résolution 12 bit; -10+10 V; différentielle résolution 12 bit; -4+4 V; par rapport à GND +2,4+36 VDC (R _i = 38,5 kΩ)	n
Entrée analogique 1 résolution 12 bit; $-10+10$ V; différentielle Sortie analogique 1 résolution 12 bit; $-4+4$ V; par rapport à GND Entrées et sorties Entrée numérique 1 $+2,4+36$ VDC ($R_i = 38,5$ k Ω)	
Entrée analogique 2 Sortie analogique 1 Sortie analogique 2 Entrées et sorties Entrée numérique 1 Entrée numérique 2 Fesolution 12 bit; $-4+4$ V; par rapport à GND $+2,4+36$ VDC ($R_i = 38,5$ k Ω)	
Sortie analogique 2 Entrées et sorties Sortie analogique 2 Entrée numérique 1 Entrée numérique 2 $+2,4+36$ VDC ($R_i = 38,5$ k Ω)	
Entrées et sorties Entrée numérique 2	
Entrée/sortie numérique 3 Entrée/sortie numérique 4 $+2,4+36$ VDC ($R_i = 38,5$ k Ω) / max. 36 VDC ($I_L < 500$ mA)	
Signaux capteur à effet Hall H1, H2, H3	
Signaux codeur A, A B, B (max. 1 MHz)	
Tension auxiliaire de sortie +5 VDC (I _L ≤10 mA)	
Tension de sortie Tension d'alimentation capteur à effet Hall +5 VDC (I _L ≤30 mA)	
Tension d'alimentation codeur +5 VDC (I _L ≤70 mA)	
Potentiomètre P1 (sur circuit imprimé) 210°; linéaire	
Moteur DC + moteur, - moteur	
Raccords moteur Moteur EC bobinage du moteur 1, bobinage du moteur 2, bobinage du moteur 3	
Interface USB 2.0 / USB 3.0 mode rapide	

ESCON Module 50/5 (438725)				
Affichages d'état	Fonctionnement	LED verte		
Amenages a etat	Erreur	LED rouge		
	Poids	12 g env.	nv.	
Caractéristiques	Dimensions (L x I x H)	43,2 x 31,8 x 12,7 mm		
	Fixation	enfichable dans les réglettes à prises femelles RM 2,54 mm		
	Température	fonctionnement	−30+45 °C	
		plage étendue *1)	+45+75 °C Derating →Illustration 2-1	
Conditions am-		stockage	−40+85 °C	
biantes	Altitude *2)	fonctionnement	06'000 m MSL	
		plage étendue *1)	6'00010'000 m MSL Derating →Illustration 2-1	
	Humidité de l'air	590% (sans condens	ation)	

^{*1)} Le fonctionnement dans la plage étendue est autorisé (température et altitude). Cependant, il provoque un derating (réduction du courant de sortie I_{cont}) de l'importance indiquée.

*2) Altitude de fonctionnement en mètres au-dessus du niveau de la mer (Mean Sea Level, MSL)

Tableau 2-4 Caractéristiques techniques

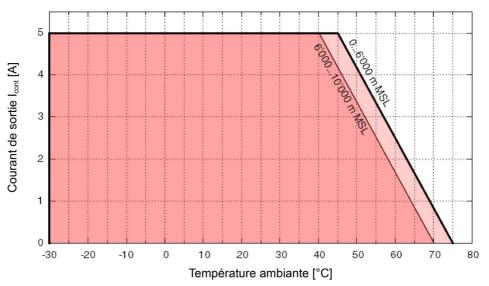
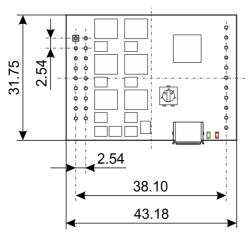



Illustration 2-1 Derating courant de sortie

Fonctionnalité de protection	Seuil de coupure	Seuil de remise sous tension
Sous-tension	7.2 V	7.4 V
Surtension	58 V	54.5 V
Courant de surcharge	22.5 A	_
Surcharge thermique	100 °C	90 °C

Tableau 2-5 Limites d'application

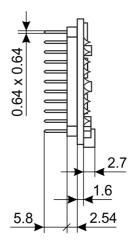


Illustration 2-2 Schéma coté [mm]

2.2 Normes

La conformité aux normes ci-dessous de l'appareil décrit a été contrôlée avec succès. Dans la pratique cependant, seul le système dans son ensemble (l'équipement opérationnel, composé de l'ensemble des différents composants que sont par exemple le moteur, le servo-contrôleur, le bloc d'alimentation, le filtre CEM, le câblage, etc.) peut être soumis à un contrôle CEM destiné à garantir que l'installation fonctionnera en toute sécurité.

Remarque importante

La conformité aux normes de l'appareil décrit n'induit pas que le système complet prêt à fonctionner est conforme à celles-ci. Pour que votre système complet puisse être conforme aux normes requises, il convient de lui faire subir un contrôle CEM approprié en tant qu'unité comprenant tous les composants.

Compatibilité électromagnétique				
Normes	CEI/EN 61000-6-2	Immunité pour les environnements industriels		
génériques	CEI/EN 61000-6-3	Émissions pour les environnements résidentiels, commerciaux et de l'industrie légère		
	CEI/EN 61000-6-3 CEI/EN 55022 (CISPR22)	Perturbations électriques des appareils de traitement de l'information		
Normes appliquées	CEI/EN 61000-4-3	Immunité aux champs électromagnétiques rayonnés aux fréquences radioélectriques >10 V/m		
appiiquees	CEI/EN 61000-4-4	Immunité aux transitoires électriques rapides en salves/burst ±2 kV		
	CEI/EN 61000-4-6	Immunité aux perturbations conduites, induites par des champs radioélectriques 10 Vrms		

Diverses			
Normes relatives à l'environnement	CEI/EN 60068-2-6	Facteurs ambiants – Essai Fc: vibrations (sinusoïdales, 10500 Hz, 20 m/s²)	
a i environnement	MIL-STD-810F	Random transport (10500 Hz jusqu'à 2,53 g _{rms})	
Normes relatives à la sécurité	III. File Number F243951: Circuit imprimé non équiné		
Fiabilité	Pronostic de fiabilité des appareils électronic Environnement: sol, tempéré (GB) Température ambiante: 298 K (25 °C) Contrainte exercée sur les composants: con électrique et à la puissance nominale Temps moyen entre défaillances (MTBF): 63		

Tableau 2-6 Normes

3 CONFIGURATION

REMARQUE IMPORTANTE: CONDITIONS PRÉALABLES À L'AUTORISATION DE DÉBUTER L'INSTALLATION

Le ESCON Module 50/5 est considéré comme une quasi-machine conformément à la Directive européenne 2006/42/CE, article 2, paragraphe (g) et il est destiné à être incorporé dans une autre machine, une autre quasi-machine ou un autre équipement, ou alors à leur être ajouté.

AVERTISSEMENT

Risque de blessure

L'exploitation de l'appareil présente des risques de blessures graves si le système dans lequel il est incorporé n'est pas exactement conforme à la directive européenne 2006/42/CE.

- Ne jamais mettre l'appareil en service sans avoir vérifié que les autres éléments de l'installation répondent aux exigences de la directive CE.
- Ne jamais mettre l'appareil en service tant que les autres éléments de l'installation ne sont pas conformes à la réglementation relative à la prévention des accidents et à la sécurité du travail.
- Ne jamais mettre l'appareil en service tant que toutes les interfaces requises n'ont pas été établies et que les exigences décrites dans ce document n'ont pas été remplies.

3.1 Règles générales en vigueur

Tension de service maximum admise

- Vérifier que la tension de service est comprise entre 10 et 50 VDC.
- Une tension de service supérieure à 56 VDC ou une inversion de polarité entraînent la destruction de l'appareil.
- Garder à l'esprit que le courant nécessaire est relatif au couple résistant. Les limites de courant de l'ESCON Module 50/5 sont les suivantes: courant continu max. 5 A / temporaire (accélération) max. 15 A.

La connexion à chaud de l'interface USB risque d'endommager le matériel

Si l'interface USB est raccordée lorsque l'alimentation électrique est activée (connexion à chaud), les différences de potentiel éventuellement élevées des blocs d'alimentation de la commande et du PC/ordinateur portable risquent d'endommager le matériel.

- Éviter les différences de potentiel entre l'alimentation électrique de la commande et celle du PC/ordinateur portable ou les compenser si possible.
- Enficher tout d'abord le connecteur USB, allumer seulement ensuite l'alimentation électrique de la commande.

3.2 Détermination de l'alimentation électrique requise

Dans le principe, toute alimentation électrique répondant aux exigences minimum peut être utilisée.

Exigences relatives à l'alimentation électrique		
Tension de sortie	+V _{cc} 1050 VDC	
Tension de sortie absolue	min. 8 VDC; max. 56 VDC	
Courant de sortie	relatif à la charge continu max. 5 A temporaire (accélération, <20 s) max. 15 A	

- 1) Utiliser la formule ci-dessous afin de calculer la tension requise en charge.
- Sélectionner l'alimentation électrique en fonction de la tension calculée. Tenir compte des points suivants:
 - L'alimentation électrique doit être en mesure de stocker l'énergie cinétique générée par une décélération de la charge (par exemple dans un condensateur).
 - Si un bloc d'alimentation stabilisé est utilisé, il convient de désactiver la protection anti-surtension dans la zone de travail.

Remarque

La formule tient compte des paramètres suivants:

- Plage de modulation max. MLI: 98%
- Chute de tension max. du contrôleur: 1 V @ 5 A

VALEURS CONNUES:

- Couple résistant M [mNm]
- · Vitesse de charge n [tr/min]
- Tension nominale moteur U_N [Volt]
- Vitesse à vide moteur, à U_N, n₀ [tr/min]
- Pente vitesse/couple moteur Δn/ΔM [tr/min/mNm]

VALEUR RECHERCHÉE:

Tension nominale de service +V_{cc} [Volt]

SOLUTION:

$$V_{CC} \ge \left[\frac{U_N}{n_Q} \cdot \left(n + \frac{\Delta n}{\Delta M} \cdot M\right) \cdot \frac{1}{0.98}\right] + 1[V]$$

3.3 Connexions

Les véritables connexions dépendent de la configuration globale du système d'entraînement et du type de moteur utilisé.

Suivre la description des opérations en respectant l'ordre indiqué et utiliser le schéma de raccordement correspondant le mieux aux composants de votre installation. Les schémas correspondants se trouvent au

Chapitre "4 Câblage" à la page 4-27.

3.3.1 Affectation des broches

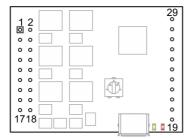


Illustration 3-3 Affectation des broches

Broche	Signal	Description
1/2	Moteur (+M) Bobinage du moteur 1	Moteur DC: Moteur + Moteur EC: Bobinage 1
3/4	Moteur (-M) Bobinage du moteur 2	Moteur DC: Moteur - Moteur EC: Bobinage 2
5/6	Bobinage du moteur 3	Moteur EC: Bobinage 3
7/8	+V _{CC}	Tension nominale de service (+10+50 VDC)
9 / 10	Power_GND GND	Mise à la terre tension de service Mise à la terre
11	+5 VDC	Tension d'alimentation capteur à effet Hall (+5 VDC; ≤30 mA) Tension d'alimentation codeur (+5 VDC; ≤70 mA) Tension de sortie auxiliaire (+5 VDC; ≤10 mA)
12	Canal A	Codeur canal A
13	Capteur à effet Hall 1	Capteur à effet Hall 1, entrée
14	Canal A\	Signal complémentaire Canal A codeur
15	Capteur à effet Hall 2	Capteur à effet Hall 2, entrée
16	Canal B	Canal B codeur
17	Capteur à effet Hall 3	Capteur à effet Hall 3, entrée
18	Canal B\	Signal complémentaire Canal B codeur

Tableau 3-7 Affectation des broches & câblage (broches 1-18)

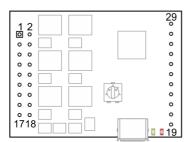


Illustration 3-4 Affectation des broches

Broche	Signal	Description
19	DigIN/DigOUT4	Entrée/sortie numérique 4
20	DigIN/DigOUT3	Entrée/sortie numérique 3
21	DigIN2	Entrée numérique 2
22	DigIN1	Entrée numérique 1
23	GND	Mise à la terre
24	AnOUT2	Sortie analogique 2
25	AnOUT1	Sortie analogique 1
26	AnIN2-	Entrée analogique 2, signal négatif
27	AnIN2+	Entrée analogique 2, signal positif
28	AnIN1-	Entrée analogique 1, signal négatif
29	AnIN1+	Entrée analogique 1, signal positif

Tableau 3-8 Affectation des broches & câblage (broches 19-29)

3.3.2 Capteur à effet Hall

Tension d'alimentation capteur à effet Hall	+5 VDC
Courant d'alimentation max. du capteur à effet Hall	30 mA
Tension d'entrée	024 VDC
Tension maximum d'entrée	+24 VDC
0 logique	typique <1,0 V
1 logique	typique >2,4 V
Résistance de tirage interne	10 kΩ (par rapport à +5,45 V)

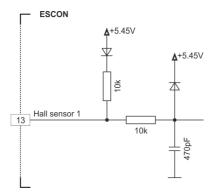


Illustration 3-5 Câblage d'entrée capteur à effet Hall 1 (dans le principe, concerne aussi les capteurs à effet Hall 2 & 3)

3.3.3 Codeur

Méthode recommandée

- Les signaux différentiels sont suffisamment protégés contre les champs électriques parasites.
 Nous recommandons par conséquent de procéder au raccordement à l'aide d'un signal d'entrée différentiel. Le contrôleur supporte les deux possibilités de manière identique, différentielle et asymétrique.
- Le contrôleur n'exige aucune impulsion d'index (Ch I, Ch I\).
- Pour obtenir les meilleures performances, nous recommandons instamment d'utiliser un codeur avec attaque de ligne (Line Driver). Des flancs de déclenchement plats peuvent sinon limiter la vitesse.

Différentiel		
Tension d'entrée différentielle min.	±200 mV	
Tension maximum d'entrée	+12 VDC / -12 VDC	
Récepteur de ligne (Line Receiver, interne)	EIA RS422 Standard	
Fréquence maximum d'entrée	1 MHz	

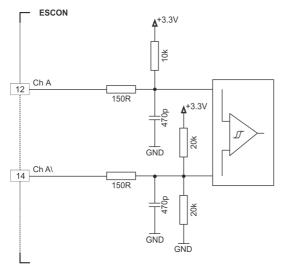


Illustration 3-6 Câblage d'entrée codeur Ch A «Différentiel» (dans le principe, s'applique aussi à Ch B)

Asymétrique		
Tension d'entrée	05 VDC	
Tension maximum d'entrée	+12 VDC / -12 VDC	
0 logique	<1,0 V	
1 logique	>2,4 V	
Courant d'entrée élevé (high)	I _{IH} = typique +420 μA @ 5 V	
Courant d'entrée faible (low)	I _{IL} = typique -170 μA @ 0 V	
Fréquence maximum d'entrée	100 kHz	

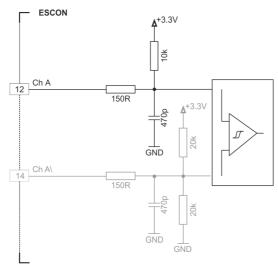


Illustration 3-7 Câblage d'entrée codeur Ch A «Asymétrique» (dans le principe, s'applique aussi à Ch B)

3.3.4 E/S numériques

3.3.4.1 Entrée numérique 1

Tension d'entrée	036 VDC
Tension maximum d'entrée	+36 VDC / -36 VDC
0 logique	typique <1,0 V
1 logique	typique >2,4 V
Résistance d'entrée	typique 47 k Ω (<3,3 V) typique 38,5 k Ω (@ 5 V) typique 25,5 k Ω (@ 24 V)
Courant d'entrée avec 1 logique	typique 130 μA @ +5 VDC
Retard de commutation	<8 ms

Plage de fréquence MLI	10 Hz5 kHz
Plage de modulation maximale MLI (résolution)	1090% (0.1%)
Précision du PWM	typique 0,1% @ 10 Hz typique 0,5% @ 1 kHz typique 2,5% @ 5 kHz
Durée de période RC Servo	330 ms
Durée d'impulsion RC Servo	12 ms

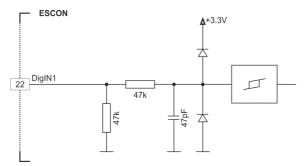


Illustration 3-8 Commutation DigIN1

3.3.4.2 Entrée numérique 2

Tension d'entrée	036 VDC
Tension maximum d'entrée	+36 VDC / -36 VDC
0 logique	typique <1,0 V
1 logique	typique >2,4 V
Résistance d'entrée	typique 47 k Ω (<3,3 V) typique 38,5 k Ω (@ 5 V) typique 25,5 k Ω (@ 24 V)
Courant d'entrée avec 1 logique	typique 130 µA @ +5 VDC
Retard de commutation	<8 ms

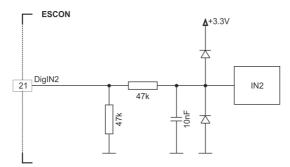


Illustration 3-9 Commutation DigIN2

3.3.4.3 Entrées/sorties numériques 3 et 4

DigIN		
Tension d'entrée	036 VDC	
Tension maximum d'entrée	+36 VDC	
0 logique	typique <1,0 V	
1 logique	typique >2,4 V	
Résistance d'entrée	typique 47 k Ω (<3,3 V) typique 38,5 k Ω (@ 5 V) typique 25,5 k Ω (@ 24 V)	
Courant d'entrée avec 1 logique	typique 130 μA @ +5 VDC	
Retard de commutation	<8 ms	

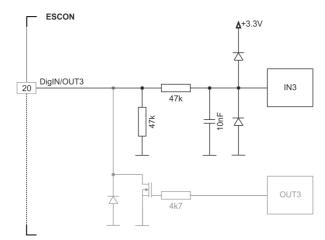


Illustration 3-10 Commutation DigIN3 (dans le principe, s'applique aussi à DigIN4)

DigOUT		
Tension maximum d'entrée	+36 VDC	
Courant maximum de charge	500 mA	
Chute maximum de tension	0,5 V @ 500 mA	
Inductance maximum de charge	100 mH @ 24 VDC; 500 mA	

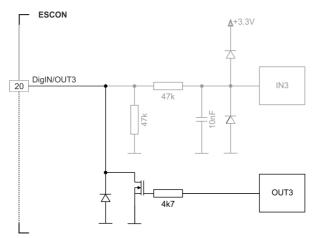


Illustration 3-11 Commutation DigOUT3 (dans le principe, s'applique aussi à DigOUT4)

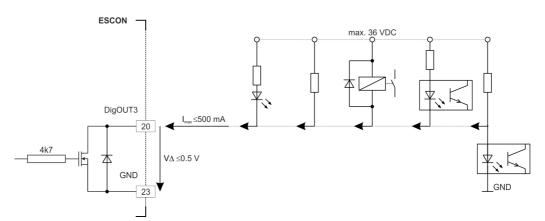


Illustration 3-12 Exemples de circuits DigOUT3 (dans le principe, s'applique aussi à DigOUT4)

3.3.5 E/S analogiques

3.3.5.1 Entrées analogiques 1 et 2

Tension d'entrée	−10+10 VDC (différentielle)
Tension maximum d'entrée	+24 VDC / -24 VDC
Tension de mode commun	−5+10 VDC (par rapport à GND)
Résistance d'entrée	80 kΩ (différentielle) 65 kΩ (par rapport à GND)
Convertisseur A/N	12 bit
Résolution	5,64 mV
Bande passante	10 kHz

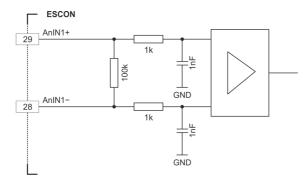


Illustration 3-13 Commutation AnIN1 (dans le principe, s'applique aussi à AnIN2)

3.3.5.2 Sorties analogiques 1 et 2

Tension de sortie	-4+4 VDC
Convertisseur N/A	12 bit
Résolution	2,42 mV
Taux de répétition	AnOUT1: 26,8 kHz AnOUT2: 5,4 kHz
Bande passante analogique de l'amplificateur de sortie	50 kHz
Charge capacitive maximum	300 nF Remarque: Le taux d'amplification est limité et proportionnel à la charge capacitive (par ex. 5 V/ms @300 nF).
Courant max. de sortie	1 mA

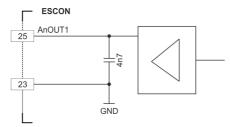


Illustration 3-14 Commutation AnOUT1 (dans le principe, s'applique aussi à AnOUT2)

3.3.6 USB (J7)

La connexion à chaud de l'interface USB risque d'endommager le matériel

Si l'interface USB est raccordée lorsque l'alimentation électrique est activée (connexion à chaud), les différences de potentiel éventuellement élevées des blocs d'alimentation de la commande et du PC/ordinateur portable risquent d'endommager le matériel.

- Éviter les différences de potentiel entre l'alimentation électrique de la commande et celle du PC/ordinateur portable ou les compenser si possible.
- Enficher tout d'abord le connecteur USB, allumer seulement ensuite l'alimentation électrique de la commande.

Illustration 3-15 Connecteur femelle USB J7

Remarque

La colonne «Côté B» (→Tableau 3-9) correspond à l'interface USB de votre PC.

J7 & côté A	Côté B	Signal	Description
Broche	Broche		
1	1	V_{BUS}	Tension d'alimentation du bus sur USB +5 VDC
2	2	D-	Data- USB (torsadé avec Data+)
3	3	D+	Data+ USB (torsadé avec Data-)
4	_	ID	Non attribué
5	4	GND	Mise à la terre USB

Tableau 3-9 Connecteur femelle USB J7 – Affectation des broches & câblage

USB Type A - micro B Cable (403968)				
A 5 1	B			
Section du câble	Conforme aux spécifications USB 2.0 / USB 3.0			
Longueur	1,5 m			
Côté A	Type USB «micro B», connecteur mâle			
Côté B	Type USB «A», connecteur mâle			

Tableau 3-10 USB Type A - micro B Cable

USB Standard	USB 2.0 / USB 3.0 (mode rapide)
Tension de service max. du bus	+5,25 VDC
Courant typique à l'entrée	60 mA
Tension DC max. à l'entrée des données	-0,5+3,8 VDC

3.4 Potentiomètre

POTENTIOMÈTRE P1

Plage de réglage	210°
Туре	Linéaire

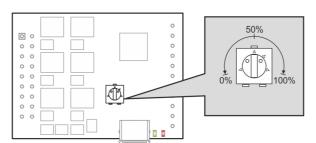


Illustration 3-16 Potentiomètres – Emplacement & plage de réglage

3.5 Affichages d'état

Des diodes électroluminescentes (LED) indiquent l'état de fonctionnement actuel (vert) du servo-contrôleur ainsi que les défauts (rouge) qu'il présente éventuellement.

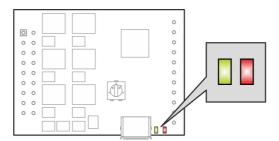


Illustration 3-17 LED - Emplacement

LED			,	
Verte	Rouge	État/Défaut		
éteinte	éteinte	INIT		
clignote lentement	éteinte	BLOCAGE		
allumée	éteinte	DÉBLOCAGE		
2x	éteinte	ARRÊT; IMMOBILISATION		
éteinte	1x	ERREUR	+Vcc Erreur surtension +Vcc Erreur sous-tension +5 VDC Erreur sous-tension	
éteinte	2x	ERREUR	 Erreur surcharge thermique Erreur courant de surcharge Erreur protection contre les surcharges de l'étage de puissance Erreur matériel interne 	
éteinte	3x	ERREUR	 Erreur codeur rupture de câble Erreur codeur polarité Erreur rupture de câble génératrice DC Erreur polarité génératrice DC 	
éteinte	4x	ERREUR	Erreur valeur de consigne MLI hors plage admise	
éteinte	5x	ERREUR	 Erreur logique de commutation capteur à effet Hall Erreur séquence de commutation capteur à effet Hall Erreur fréquence capteur à effet Hall excessive 	
éteinte	allumée	ERREUR	Erreur identification Auto Tuning Erreur interne de logiciel	
lentement 1s allumée éteinte 1x 2x 3x 3x 3x 4x 5x				
4x				
5x				

Tableau 3-11 LED – Interprétation des affichages d'état

4 CÂBLAGE

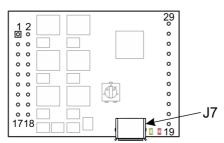


Illustration 4-18 Interfaces - Désignations et emplacement

Remarque

Les désignations et les symboles suivants se trouvent dans les diagrammes des pages suivantes:

- «Analog I/O» signifie entrées/sorties analogiques
- «DC Tacho» signifie génératrice DC
- «Digital I/O» signifie entrées/sorties numériques
- «Power Supply» signifie alimentation électrique
- $\stackrel{\perp}{=}$ Mise à la terre (en option)

4.1 Moteurs DC

MAXON DC MOTOR

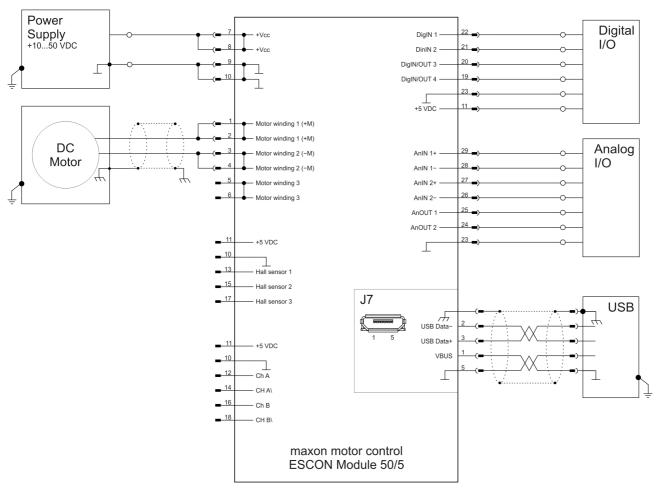


Illustration 4-19 maxon DC motor

MAXON DC MOTOR AVEC GÉNÉRATRICE DC

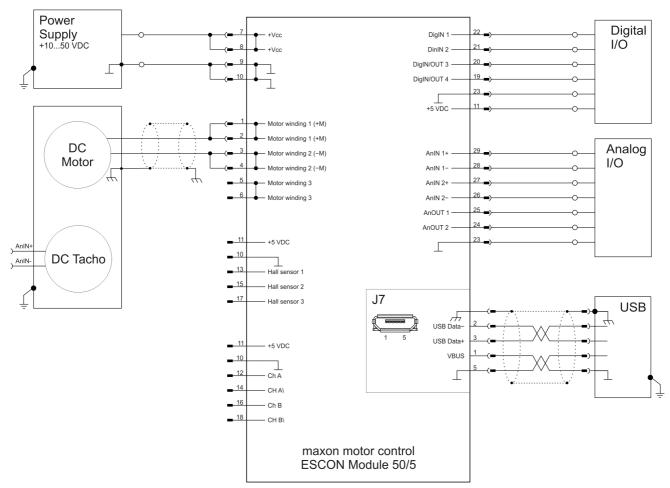


Illustration 4-20 maxon DC motor avec génératrice DC

MAXON DC MOTOR AVEC CODEUR

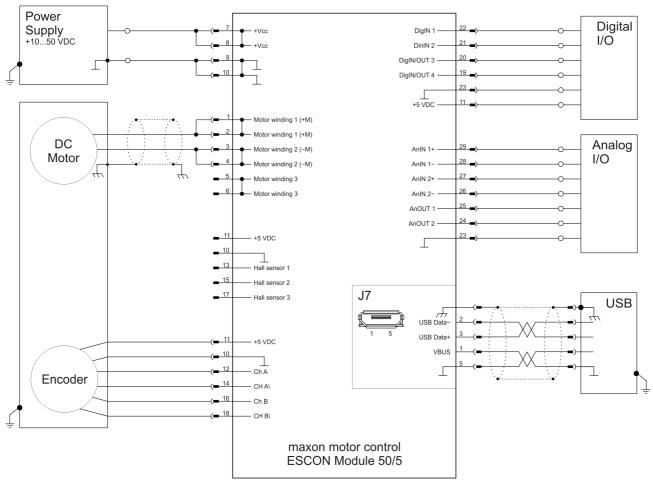


Illustration 4-21 maxon DC motor avec codeur

4.2 Moteurs EC

MAXON EC MOTOR AVEC CAPTEURS À EFFET HALL

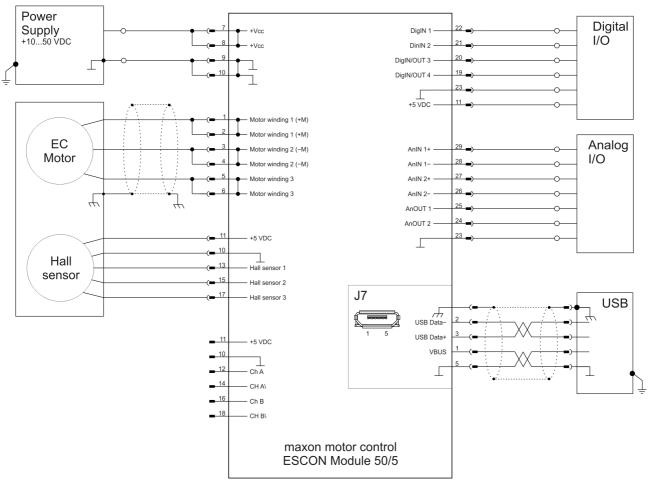


Illustration 4-22 maxon EC motor avec capteurs à effet Hall

MAXON EC MOTOR AVEC CAPTEURS À EFFET HALL & CODEUR

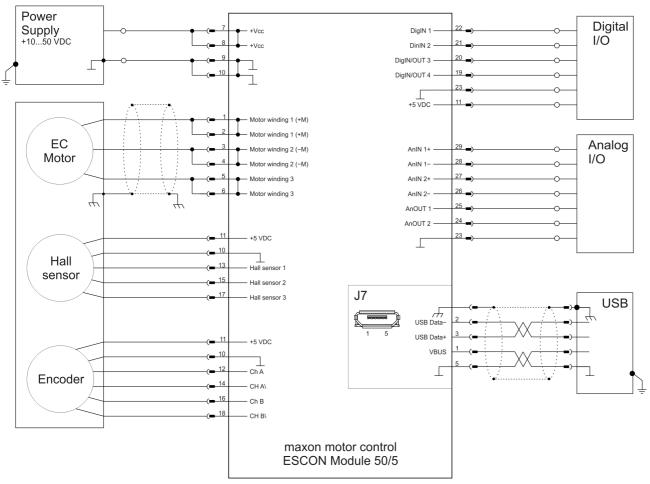


Illustration 4-23 maxon EC motor avec capteurs à effet Hall & codeur

5 GUIDE DE CONFIGURATION DE LA CARTE MÈRE

Ce chapitre contient des informations utiles concernant l'intégration de l'ESCON Module 50/5 sur une platine électronique. Le guide de configuration de la carte mère contient des recommandations relatives à la configuration de la platine, aux composants externes éventuellement nécessaires, à l'affectation des broches, ainsi que des exemples de câblage.

ATTENTION

Activité dangereuse

Une configuration incorrecte peut entraîner des blessures graves.

- Poursuivez uniquement si les derniers développements de l'électronique vous sont connus.
- La conception d'une platine électronique exige certaines connaissances spécialisées et doit être confiée uniquement à des développeurs expérimentés en la matière.
- Ce guide rapide représente une aide et ne saurait à ce titre être exhaustif; d'autre part, le respecter ne produira pas automatiquement un composant opérationnel.

Faites-vous aider:

Si vous n'êtes pas familiarisé avec l'élaboration de circuits imprimés, faites-vous impérativement aider. Si vous le souhaitez, maxon établira un devis couvrant la conception et la fabrication d'une carte mère correspondant à votre application.

5.1 Exigences concernant les composants d'autres fournisseurs

5.1.1 Réglettes à prises femelles

Le modèle de ESCON Module 50/5 à réglettes permet deux types de montage. Soit le module est enfiché sur une réglette à prises femelles (→ Tableau 5-12), soit il est soudé directement sur un circuit imprimé.

5.1.2 Tension d'alimentation

Nous recommandons de prévoir un fusible externe pour protéger l'ESCON Module 50/5, ainsi qu'une diode TVS et un condensateur dans l'alimentation en tension. Tenir compte des recommandations suivantes:

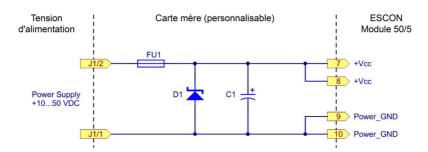


Illustration 5-24 Câblage de l'alimentation en tension

FUSIBLE D'ENTRÉE (FU1)

Un fusible d'entrée (FU1) est nécessaire pour garantir la protection contre les inversions de polarité. Combiné avec une diode TVS (D1) unipolaire, il empêche toute circulation inverse du courant.

DIODE TVS (D1)

Nous recommandons de raccorder une diode TVS (Transient Voltage Suppressor) (D1) à l'alimentation en tension afin d'assurer la protection contre les surtensions pouvant résulter de transitoires de tension ou d'énergie de décélération rétroalimentée.

CONDENSATEUR (C1)

Le fonctionnement de l'ESCON Module 50/5 ne présuppose pas obligatoirement l'installation d'un condensateur extérieur (C1). Raccorder un condensateur à électrolyte dans l'alimentation en tension permet de réduire encore l'ondulation de tension et d'absorber les courants rétroalimentés.

5.1.3 Câbles moteur / selfs de lissage

L'ESCON Module 50/5 ne dispose pas d'un self de lissage interne.

La plupart des moteurs et des applications n'exigent aucun self de lissage supplémentaire. Cependant, la combinaison d'une tension d'alimentation élevée et d'une inductance aux bornes minime peut provoquer l'augmentation de l'ondulation du courant à une valeur dépassant la limite admise. Il en résulte un échauffement superflu du moteur et une instabilité du comportement de régulation. L'inductance minimum aux bornes requise par phase se calcule à l'aide de la formule suivante:

$$L_{phase} \ge \frac{1}{2} \cdot \left(\frac{V_{cc}}{6 \cdot f_{PWM} \cdot I_N} - (0.3 \cdot L_{motor}) \right)$$

 $L_{phase}[H]$ Inductance extérieure supplémentaire par phase

 $V_{cc}[V]$ Tension de service + V_{cc}

 $f_{PWM}[Hz]$ Fréquence de cycle étage de puissance = 53 600 Hz

 $I_N[A]$ Courant nominal du moteur (\rightarrow ligne 6 du catalogue maxon)

 $L_{motor}[H]$ Inductance aux bornes du moteur (\Rightarrow ligne 11 du catalogue maxon)

Si le résultat du calcul est négatif, un self supplémentaire est nécessaire. D'un autre côté, un self peut aussi être utile dans un contexte de composants filtrants supplémentaires destinés à réduire les perturbations électromagnétiques.

Un self supplémentaire doit présenter un blindage électromagnétique, un courant de saturation élevé, un courant nominal supérieur au courant de service continu du moteur et émettre des pertes réduites. L'exemple de câblage suivant correspond à une inductance supplémentaire de 22 µH. Si l'inductance supplémentaire requise doit différer de cette valeur, les composants filtrants doivent être modifiés en conséquence. Si vous avez besoin d'aide pour configurer le filtre, contactez l'assistance maxon à l'adresse →http://support.maxongroup.com.

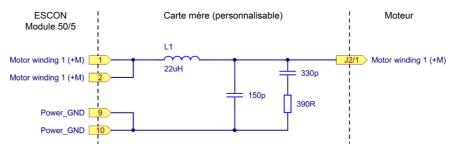


Illustration 5-25 Câblage bobinage moteur 1 (dans le principe, s'applique aussi aux bobinages 2 & 3)

5.1.4 Composants et fabricants recommandés

Composants recommandés						
	Réglette à prises femelles droite, connexion à réglette à prises mâles 0,64 x 0,64 mm, pas de 2,54 mm, 3 A, matériau des contacts: or					
Réglette à prises femelles	9 pôles, 2 rangées	Preci-Dip (803-87-018-10-005101) Würth (613 018 218 21) E-tec (BL2-018-S842-55)				
	11 pôles, 1 rangée	Preci-Dip (801-87-011-10-005101) Würth (613 011 118 21) E-tec (BL1-011-S842-55)				
Fusible FU1	Littelfuse 157 Series, porte-fusible avec SMD NANO2 Fusible 10 A à action rapide, 26,46 A²sec (0157010.DR)					
Diode TVS D1	 Vishay (SMBJ54A)					
Condensateur C1	 Panasonic (EEUFC1J221S) Tension nominale 63 V, capacité 220 μF, courant ondulatoire 1285 mA Rubycon (63ZL220M10X23) Tension nominale 63 V, capacité 220 μF, courant ondulatoire 1120 mA Nichicon (UPM1J221MHD) Tension nominale 63 V, capacité 220 μF, courant ondulatoire 1300 mA 					
Câble moteur Self de lissage	• Würth Elektronik WE-PD-XXL (7447709220) $L_{N}=22~\mu\text{H},~R_{DC}=23,3~m\Omega,~I_{DC}=5,3~\text{A},~I_{sat}=6,5~\text{A},~\text{blind\'e}$ • Coiltronics (DR127-220) $L_{N}=22~\mu\text{H},~R_{DC}=39,1~m\Omega,~I_{DC}=4,0~\text{A},~I_{sat}=7,6~\text{A},~\text{blind\'e}$ • Würth Elektronik WE-PD-XXL (7447709150) $L_{N}=15~\mu\text{H},~R_{DC}=21~m\Omega,~I_{DC}=6,5~\text{A},~I_{sat}=8,0~\text{A},~\text{blind\'e}$ • Sumida (CDRH129RNP-150MC) $L_{N}=15~\mu\text{H},~R_{DC}=16~m\Omega,~I_{DC}=6,0~\text{A},~I_{sat}>6,0~\text{A},~\text{blind\'e}$ • Coiltronics (DR127-150) $L_{N}=15~\mu\text{H},~R_{DC}=25~m\Omega,~I_{DC}=5,0~\text{A},~I_{sat}=9,7~\text{A},~\text{blind\'e}$ • Bourns (SRR1280-150M) $L_{N}=15~\mu\text{H},~R_{DC}=28~m\Omega,~I_{DC}=5,2~\text{A},~I_{sat}>5,2~\text{A},~\text{blind\'e}$ • Würth Elektronik WE-PD-XL (744770115) $L_{N}=15~\mu\text{H},~R_{DC}=24~m\Omega,~I_{DC}=5,0~\text{A},~I_{sat}=6,0~\text{A},~\text{blind\'e}$ • Sumida (CDR127/LDNP-150M) $L_{N}=15~\mu\text{H},~R_{DC}=20~m\Omega,~I_{DC}=5,7~\text{A},~I_{sat}>5,7~\text{A},~\text{blind\'e}$					

Tableau 5-12 Guide de configuration de la carte mère – Composants recommandés

5.2 Directives relatives à la configuration

Les indications suivantes ont pour objectif d'aider à la configuration d'une carte-mère spécifique à l'application et de garantir que l'ESCON Module 50/5 sera intégré de manière correcte et en toute sécurité.

5.2.1 Mise à la terre

Tous les raccords de masse (GND) sont raccordés en interne sur l'ESCON Module 50/5 (potentiel identique). En règle générale, il convient de prévoir un plan de masse (ground plane) sur la carte mère. Tous les raccords de masse doivent être raccordés à la masse de l'alimentation en tension via des pistes conductrices larges.

Broche	Signal	Description
9	Power_GND GND	Mise à la terre tension de service Mise à la terre
10	Power_GND GND	Mise à la terre tension de service Mise à la terre
23	GND	Mise à la terre

Tableau 5-13 Guide de configuration de la carte mère - Masse

Si un potentiel de terre existe ou est prescrit, il convient de raccorder le plan de masse (ground plane) au potentiel de terre avec un ou plusieurs condensateurs. Il est recommandé d'utiliser des condensateurs céramique de 100 nF et 100 V.

5.2.2 Configuration

Règles relatives à la configuration de la carte mère:

- Broches de raccordement [7] et [8], tension de service +V_{CC}:
 Veiller à ce que les broches soient raccordées au fusible à l'aide de pistes conductrices larges.
- Broches de raccordement [9], [10] et [23], masse:
 Toutes les broches doivent être raccordées à la masse de la tension de service à l'aide de pistes conductrices larges.
- La largeur des pistes conductrices et l'épaisseur de la couche de cuivre des câbles de l'alimentation en tension et du moteur dépendent du courant nécessaire dans l'application. Une largeur minimum de 75 mil et une épaisseur de cuivre supérieure à 35 µm sont recommandées.

5.3 Empreinte THT

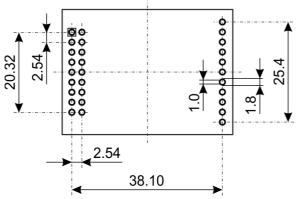


Illustration 5-26 Empreinte THT [mm] - Vue de dessus

5.4 Affectation des broches

Pour obtenir des indications détaillées, consulter → Chapitre "3.3 Connexions" à la page 3-15.

5.5 Caractéristiques techniques

Pour obtenir des indications détaillées, consulter → Chapitre "2 Spécifications" à la page 2-9.

5.6 Schéma coté

Pour accéder au schéma coté, consulter →Illustration 2-2 à la page 2-11.

5.7 ESCON Module Motherboard (438779)

La carte mère ESCON Module Motherboard (désignée plus loin par ESCON Module MoBo) disponible représente l'alternative à une carte mère conçue par l'utilisateur. Elle comporte toutes les connexions nécessaires, disposées sur des blocs de jonction.

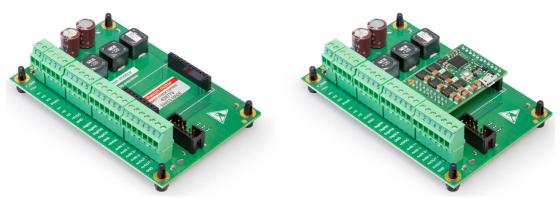


Illustration 5-27 ESCON Module MoBo (à gauche) avec ESCON Module 50/5 mis en place (à droite)

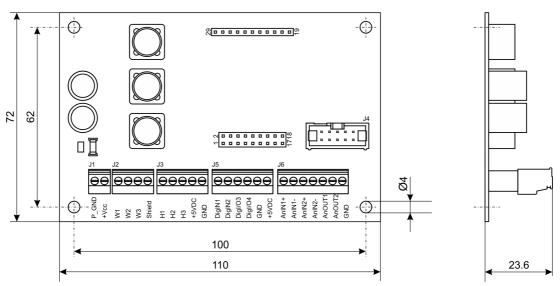


Illustration 5-28 ESCON Module MoBo – Schéma coté [mm]

5.7.1 Montage

La carte ESCON Module MoBo est conçue de sorte qu'il est facile de la fixer par vissage ou de l'intégrer dans des systèmes de profilés normés. Pour les informations relatives à la commande des composants requis, consulter → Illustration 5-29 (sert uniquement de représentation) et → Tableau 5-14.

Illustration 5-29 ESCON Module MoBo - Mise en place dans profilé DIN

Spécification / Accessoires		
Adaptateur pour	PHOENIX CONTACT 2 éléments de base latéraux 11,25 mm UMK-SE11.25-1 (2970442) 2 éléments de base, boîtier ouvert, 45 mm UMK-BE45 (2970015) 2 pieds de montage UMK-FE (2970031)	
profilé DIN	CamdenBoss 2 éléments terminaux, avec pied, 22,5 mm (CIME/M/SEF2250S) 1 support de base 22,5 mm (CIME/M/BE2250SS) 1 support de base 45 mm (CIME/M/BE4500SS)	

Tableau 5-14 ESCON Module MoBo, mise en place dans profilé DIN – Spécification & accessoires

5.7.2 Connexions

Remarque

L'interface USB se trouve directement sur l'ESCON Module 50/5.

5.7.2.1 Alimentation électrique (J1)

Illustration 5-30 ESCON Module MoBo – Connecteur mâle d'alimentation électrique J1

J1 Broche	Signal	Description
1	Power_GND	Mise à la terre tension de service
2	+V _{cc}	Tension nominale de service (+10+50 VDC)

Tableau 5-15 ESCON Module MoBo – Connecteur mâle d'alimentation électrique J1 – Affectation des broches & câblage

Spécification / Accessoires		
Type Borne à vis LP enfichable, 2 pôles, pas 3,5 mm		
Câbles adaptés	0,141,5 mm² plusieurs conducteurs, AWG 28-14 0,141,5 mm² mono conducteur, AWG 28-14	

Tableau 5-16 ESCON Module MoBo – Connecteur mâle d'alimentation électrique J1 – Spécification & accessoires

5.7.3 Moteur (J2)

Le servo-contrôleur permet d'entraîner des moteurs DC avec balais ou des moteurs EC sans balais.

Illustration 5-31 ESCON Module MoBo – Connecteur mâle moteur J2

J2 Broche	Signal	Description
1	Moteur (+M)	Moteur DC: Moteur +
2	Moteur (-M)	Moteur DC: Moteur -
3	Non attribué	-
4	Blindage moteur	Blindage des câbles

Tableau 5-17 ESCON Module MoBo – Connecteur mâle moteur J2 – Affectation des broches pour maxon DC motor (avec balais)

J2 Broche	Signal	Description
1	Bobinage du moteur 1	Moteur EC: Bobinage 1
2	Bobinage du moteur 2	Moteur EC: Bobinage 2
3	Bobinage du moteur 3	Moteur EC: Bobinage 3
4	Blindage moteur	Blindage des câbles

Tableau 5-18 ESCON Module MoBo – Connecteur mâle moteur J2 – Affectation des broches pour maxon EC motor (sans balais)

Spécification / Accessoires		
Type Borne à vis LP enfichable, 4 pôles, pas 3,5 mm		
Câbles adaptés	0,141,5 mm² plusieurs conducteurs, AWG 28-14 0,141,5 mm² mono conducteur, AWG 28-14	

Tableau 5-19 ESCON Module MoBo – Connecteur mâle moteur J2 – Spécification & accessoires

5.7.3.1 Capteur à effet Hall (J3)

Les commutations intégrées et adaptées des capteurs à effet Hall font appel à un «Schmitt-Trigger» à sortie open collector (sortie du collecteur non connectée).

Illustration 5-32 ESCON Module MoBo - Connecteur mâle capteur à effet Hall J3

J3 Broche	Signal	Description
1	Capteur à effet Hall 1	Capteur à effet Hall 1, entrée
2	Capteur à effet Hall 2	Capteur à effet Hall 2, entrée
3	Capteur à effet Hall 3	Capteur à effet Hall 3, entrée
4	+5 VDC	Tension d'alimentation capteur à effet Hall (+5 VDC; $\rm I_L \le \! 30~mA)$
5	GND	Mise à la terre

Tableau 5-20 ESCON Module MoBo - Connecteur mâle capteur à effet Hall J3 - Affectation des broches

Spécification / Accessoires		
Type Borne à vis LP enfichable, 5 pôles, pas 3,5 mm		
Câbles adaptés	0,141,5 mm² plusieurs conducteurs, AWG 28-14 0,141,5 mm² mono conducteur, AWG 28-14	

Tableau 5-21 ESCON Module MoBo - Connecteur mâle moteur J3 - Spécification & accessoires

5.7.3.2 Codeur (J4)

Illustration 5-33 ESCON Module MoBo – Connecteur femelle codeur J4

J4	Signal	Description
Broche	Signal	Description
1	Non attribué	_
2	+5 VDC	Tension d'alimentation codeur (+5 VDC; ≤70 mA)
3	GND	Mise à la terre
4	Non attribué	-
5	Canal A\	Signal complémentaire Canal A
6	Canal A	Canal A
7	Canal B\	Signal complémentaire Canal B
8	Canal B	Canal B
9	Non attribué	-
10	Non attribué	-

Tableau 5-22 ESCON Module MoBo – Connecteur femelle J4 codeur – Affectation des broches & câblage

Accessoires		
	Étrier	Pour connecteurs femelles à décharge de traction: 1 étrier de maintien, hauteur 13,5 mm, 3M (3505-8110)
Décharge de traction appropriée	Eulei	Pour connecteurs femelles sans décharge de traction: 1 étrier de maintien, hauteur 7,9 mm, 3M (3505-8010)
	Clenche	Pour connecteurs femelles à décharge de traction: 2 pces, 3M (3505-33B)

Tableau 5-23 ESCON Module MoBo – Connecteur femelle codeur J4 – Accessoires

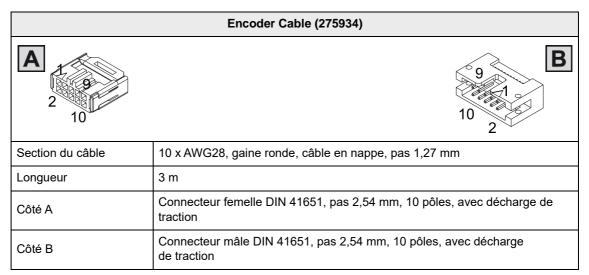


Tableau 5-24 ESCON Module MoBo - Encoder Cable

Méthode recommandée

- Les signaux différentiels sont suffisamment protégés contre les champs électriques parasites.
 Nous recommandons par conséquent de procéder au raccordement à l'aide d'un signal d'entrée différentiel. Le contrôleur supporte les deux possibilités de manière identique, différentielle et asymétrique.
- Le contrôleur n'exige aucune impulsion d'index (Ch I, Ch I\).
- Pour obtenir les meilleures performances, nous recommandons instamment d'utiliser un codeur avec attaque de ligne (Line Driver). Des flancs de déclenchement plats peuvent sinon limiter la vitesse.

5.7.3.3 E/S numériques (J5)

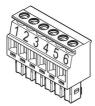


Illustration 5-34 ESCON Module MoBo – Connecteur mâle à E/S numériques J5

J5 Broche	Signal	Description
1	DigIN1	Entrée numérique 1
2	DigIN2	Entrée numérique 2
3	DigIN/DigOUT3	Entrée/sortie numérique 3
4	DigIN/DigOUT4	Entrée/sortie numérique 4
5	GND	Mise à la terre
6	+5 VDC	Tension de sortie auxiliaire (+5 VDC; ≤10 mA)

Tableau 5-25 ESCON Module MoBo – Connecteur mâle E/S numériques J5 – Affectation des broches & câblage

Spécification / Accessoires		
Туре	Borne à vis LP enfichable, 6 pôles, pas 3,5 mm	
Câbles adaptés	0,141,5 mm² plusieurs conducteurs, AWG 28-14 0,141,5 mm² mono conducteur, AWG 28-14	

Tableau 5-26 ESCON Module MoBo – Connecteur mâle E/S numériques J5 – Spécification & accessoires

5.7.3.4 E/S analogiques (J6)

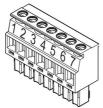


Illustration 5-35 ESCON Module MoBo – Connecteur mâle à E/S analogiques J6 $\,$

J6 Broche	Signal	Description
1	AnIN1+	Entrée analogique 1, signal positif
2	AnIN1-	Entrée analogique 1, signal négatif
3	AnIN2+	Entrée analogique 2, signal positif
4	AnIN2-	Entrée analogique 2, signal négatif
5	AnOUT1	Sortie analogique 1
6	AnOUT2	Sortie analogique 2
7	GND	Mise à la terre

Tableau 5-27 ESCON Module MoBo – Connecteur mâle E/S analogiques J6 – Affectation des broches & câblage

Spécification / Accessoires	
Туре	Borne à vis LP enfichable, 7 pôles, pas 3,5 mm
Câbles adaptés	0,141,5 mm² plusieurs conducteurs, AWG 28-14 0,141,5 mm² mono conducteur, AWG 28-14

Tableau 5-28 ESCON Module MoBo – Connecteur mâle E/S analogiques J6 – Spécification & accessoires

5.7.4 Câblage

Remarque

L'interface USB se trouve directement sur l'ESCON Module 50/5.

Remarque

Les désignations et les symboles suivants se trouvent dans les diagrammes des pages suivantes:

- «Analog I/O» signifie entrées/sorties analogiques
- «DC Tacho» signifie génératrice DC
- «Digital I/O» signifie entrées/sorties numériques
- · «Power Supply» signifie alimentation électrique
- 🛓 Mise à la terre (en option)

5.7.4.1 Moteurs DC

MAXON DC MOTOR

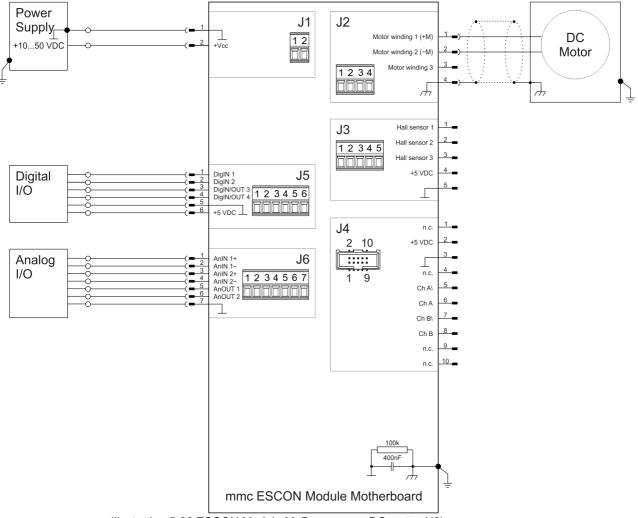


Illustration 5-36 ESCON Module MoBo - maxon DC motor (J2)

MAXON DC MOTOR AVEC GÉNÉRATRICE DC

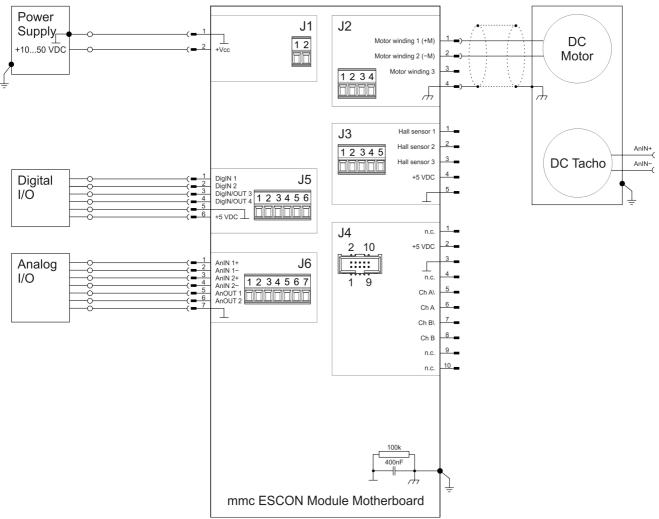


Illustration 5-37 ESCON Module MoBo - maxon DC motor avec génératrice DC (J2)

MAXON DC MOTOR AVEC CODEUR

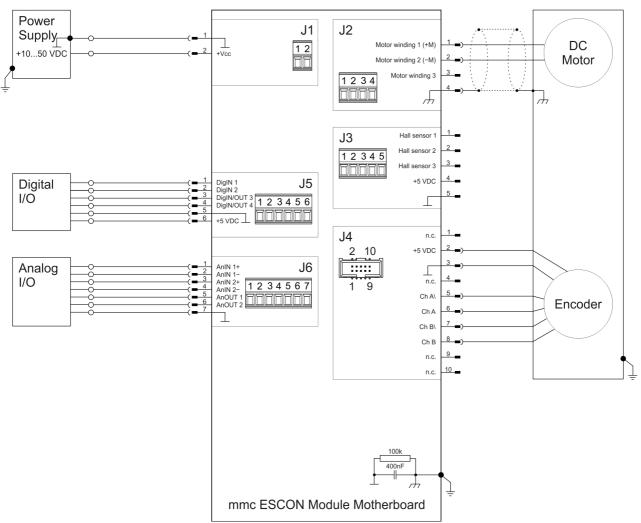


Illustration 5-38 ESCON Module MoBo - maxon DC motor avec codeur (J2 / J4)

5.7.4.2 Moteurs EC

MAXON EC MOTOR AVEC CAPTEURS À EFFET HALL

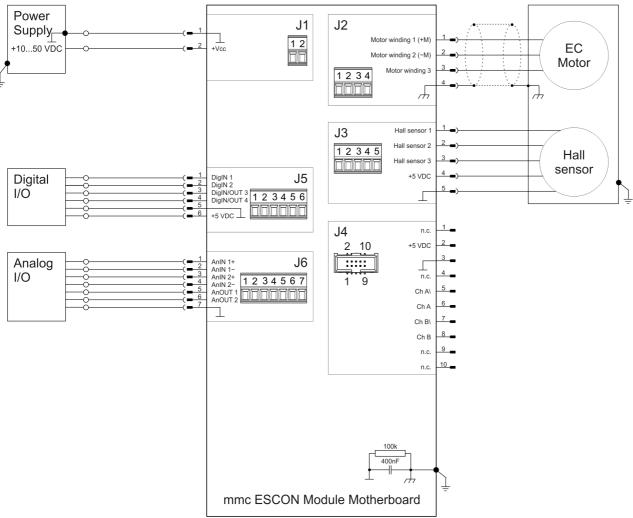


Illustration 5-39 ESCON Module MoBo – maxon EC motor avec capteurs à effet Hall (J2 / J3)

MAXON EC MOTOR AVEC CAPTEURS À EFFET HALL & CODEUR

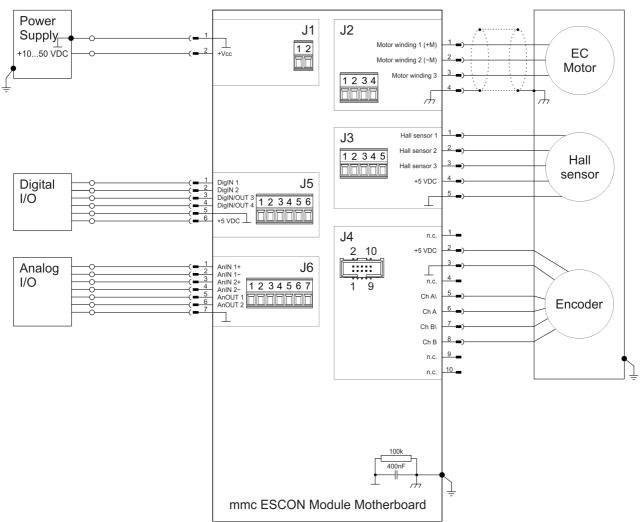


Illustration 5-40 ESCON Module MoBo - maxon EC motor avec capteurs à effet Hall & codeur (J2 / J3 / J4)

5.8 Pièces de rechange

Numéro de commande	Description
444144	Bloc de jonction LP enfichable, 2 pôles, pas de 3,5 mm, repéré 12
444145	Bloc de jonction LP enfichable, 4 pôles, pas de 3,5 mm, repéré 14
444146	Bloc de jonction LP enfichable, 5 pôles, pas de 3,5 mm, repéré 15
444147	Bloc de jonction LP enfichable, 6 pôles, pas de 3,5 mm, repéré 16
444148	Bloc de jonction LP enfichable, 7 pôles, pas de 3,5 mm, repéré 17

Tableau 5-29 Pièces de rechange

LISTE DES FIGURES

Illustration 2-1	Derating courant de sortie	10
Illustration 2-2	Schéma coté [mm]	11
Illustration 3-3	Affectation des broches	15
Illustration 3-4	Affectation des broches	16
Illustration 3-5	Câblage d'entrée capteur à effet Hall 1 (dans le principe, concerne aussi les capteurs à effet Hall 2 & 3)	17
Illustration 3-6	Câblage d'entrée codeur Ch A «Différentiel» (dans le principe, s'applique aussi à Ch B)	18
Illustration 3-7	Câblage d'entrée codeur Ch A «Asymétrique» (dans le principe, s'applique aussi à Ch B)	19
Illustration 3-8	Commutation DigIN1	20
Illustration 3-9	Commutation DigIN2	21
Illustration 3-10	Commutation DigIN3 (dans le principe, s'applique aussi à DigIN4)	21
Illustration 3-11	Commutation DigOUT3 (dans le principe, s'applique aussi à DigOUT4)	22
Illustration 3-12	Exemples de circuits DigOUT3 (dans le principe, s'applique aussi à DigOUT4)	22
Illustration 3-13	Commutation AnIN1 (dans le principe, s'applique aussi à AnIN2)	23
Illustration 3-14	Commutation AnOUT1 (dans le principe, s'applique aussi à AnOUT2)	23
Illustration 3-15	Connecteur femelle USB J7	24
Illustration 3-16	Potentiomètres – Emplacement & plage de réglage	25
Illustration 3-17	LED – Emplacement	26
Illustration 4-18	Interfaces – Désignations et emplacement	27
Illustration 4-19	maxon DC motor	28
Illustration 4-20	maxon DC motor avec génératrice DC	29
Illustration 4-21	maxon DC motor avec codeur	30
Illustration 4-22	maxon EC motor avec capteurs à effet Hall	31
Illustration 4-23	maxon EC motor avec capteurs à effet Hall & codeur	32
Illustration 5-24	Câblage de l'alimentation en tension	33
Illustration 5-25	Câblage bobinage moteur 1 (dans le principe, s'applique aussi aux bobinages 2 & 3)	35
Illustration 5-26	Empreinte THT [mm] – Vue de dessus	37
Illustration 5-27	ESCON Module MoBo (à gauche) avec ESCON Module 50/5 mis en place (à droite)	38
Illustration 5-28	ESCON Module MoBo – Schéma coté [mm]	38
Illustration 5-29	ESCON Module MoBo – Mise en place dans profilé DIN	39
Illustration 5-30	ESCON Module MoBo – Connecteur mâle d'alimentation électrique J1	40
Illustration 5-31	ESCON Module MoBo – Connecteur mâle moteur J2	41
Illustration 5-32	ESCON Module MoBo – Connecteur mâle capteur à effet Hall J3	42
Illustration 5-33	ESCON Module MoBo – Connecteur femelle codeur J4	43
Illustration 5-34	ESCON Module MoBo – Connecteur mâle à E/S numériques J5	45
Illustration 5-35	ESCON Module MoBo – Connecteur mâle à E/S analogiques J6	46
Illustration 5-36	ESCON Module MoBo – maxon DC motor (J2)	47
Illustration 5-37	ESCON Module MoBo – maxon DC motor avec génératrice DC (J2)	48
Illustration 5-38	ESCON Module MoBo – maxon DC motor avec codeur (J2 / J4)	49
Illustration 5-39	ESCON Module MoBo – maxon EC motor avec capteurs à effet Hall (J2 / J3)	50
Illustration 5-40	ESCON Module MoBo – maxon EC motor avec capteurs à effet Hall & codeur (J2 / J3 / J4)	51

LISTE DES TABLEAUX

l ableau 1-1	Notation utilisée	5
Tableau 1-2	Symboles & signes	6
Tableau 1-3	Marques déposées et noms de marques	6
Tableau 2-4	Caractéristiques techniques	. 10
Tableau 2-5	Limites d'application	. 11
Tableau 2-6	Normes	. 12
Tableau 3-7	Affectation des broches & câblage (broches 1-18)	. 15
Tableau 3-8	Affectation des broches & câblage (broches 19-29)	. 16
Tableau 3-9	Connecteur femelle USB J7 – Affectation des broches & câblage	. 24
Tableau 3-10	USB Type A - micro B Cable	. 24
Tableau 3-11	LED – Interprétation des affichages d'état	. 26
Tableau 5-12	Guide de configuration de la carte mère – Composants recommandés	. 36
Tableau 5-13	Guide de configuration de la carte mère – Masse	. 37
Tableau 5-14	ESCON Module MoBo, mise en place dans profilé DIN – Spécification & accessoires	. 39
Tableau 5-15	ESCON Module MoBo – Connecteur mâle d'alimentation électrique J1 – Affectation des broches & câblage	. 40
Tableau 5-16	ESCON Module MoBo – Connecteur mâle d'alimentation électrique J1 – Spécification & accessoires	. 40
Tableau 5-17	ESCON Module MoBo – Connecteur mâle moteur J2 – Affectation des broches pour maxon DC motor (avec balais)	. 41
Tableau 5-18	ESCON Module MoBo – Connecteur mâle moteur J2 – Affectation des broches pour maxon EC motor (sans balais)	. 41
Tableau 5-19	ESCON Module MoBo – Connecteur mâle moteur J2 – Spécification & accessoires	. 41
Tableau 5-20	ESCON Module MoBo – Connecteur mâle capteur à effet Hall J3 – Affectation des broches	. 42
Tableau 5-21	ESCON Module MoBo – Connecteur mâle moteur J3 – Spécification & accessoires	. 42
Tableau 5-22	ESCON Module MoBo – Connecteur femelle J4 codeur – Affectation des broches & câblage	. 43
Tableau 5-23	ESCON Module MoBo – Connecteur femelle codeur J4 – Accessoires	. 43
Tableau 5-24	ESCON Module MoBo – Encoder Cable	. 44
Tableau 5-25	ESCON Module MoBo – Connecteur mâle E/S numériques J5 – Affectation des broches & câblage	. 45
Tableau 5-26	ESCON Module MoBo – Connecteur mâle E/S numériques J5 – Spécification & accessoires	. 45
Tableau 5-27	ESCON Module MoBo – Connecteur mâle E/S analogiques J6 – Affectation des broches & câblage	. 46
Tableau 5-28	ESCON Module MoBo – Connecteur mâle E/S analogiques J6 – Spécification & accessoires	. 46
Tableau 5-29	Pièces de rechange	. 52

INDEX

Α

Activités interdites <i>6</i> Affectation des broches <i>15</i>	LED 26 LED d'état 26
Affectation des connexions 15	LLD detail 20
Affichage d'erreur 26	М
Affichage de l'état 26	
Affichage de l'état de service 26	MoBo (ESCON Module Motherboard) 38
	M
Alimentation électrique, nécessaire 14	N
Autorisation d'exploitation 13	Normes, respectées 12
C	Notation, utilisée 5
	Numéros de commande
Câble (pré-confectionné)	275934 <i>44</i>
Encoder Cable 44	403968 <i>24</i>
USB Type A - micro B Cable 24	438725 9
Caractéristiques de puissance 9	438779 38
Caractéristiques techniques 9	444144 <i>5</i> 2
Comment procéder?	444145 <i>5</i> 2
Assistance lors de la configuration de la carte mère 33	444146 <i>5</i> 2
Signification des symboles et signes présents dans ce docu-	444147 52
ment 6	444148 <i>5</i> 2
Conditions préalables à l'installation 13	•
Connecteurs femelles	0
J1 40	Opérations obligatoires 6
J2 41	
J3 42	P
J4 18, 43	Potentiomètre 25
J5 <i>4</i> 5 J6 <i>4</i> 6	Priorité à la sécurité 8
J7 24	Thomas and securite o
Consignes de sécurité 6, 8	R
CSDE 8	
CODE 0	Réglementation nationale 8
D	Réglementation supplémentaire 8
	Réglementation, supplémentaire 8
Directive CE en vigueur 13	0
Directive CE, en vigueur 13	S
Domaine d'utilisation	Schémas de connexion des
de ce document 5	moteurs DC 28, 47
des composants 7	moteurs EC 31, 50
-	Signes, utilisés 6
E	Symboles, utilisés 6
Entrées analogiques 23	
Entrées numériques 20, 21	U
	Utilisation 7
1	Cuilculott /
Incorporation dans un système 13	
Information (symbole) 6	
Interface USB 24	

L

Interfaces (désignation, emplacement) 27

Le présent document est protégé par des droits d'auteur, même sous forme d'extrait. Toute réutilisation de ce document, qu'il s'agisse d'une reproduction, d'une traduction, de la reproduction sur microfilm ou d'un autre traitement électronique dépassant le cadre stricto sensu de la protection des droits d'auteur, est interdite sans autorisation écrite de maxon motor ag et peut faire l'objet de poursuites judiciaires.

© 2021 maxon. Tous droits réservés. Sous réserve de modifications.

CCMC | ESCON Module 50/5 Documentation Hardware | Édition 2021-08 | DocID rel9053

maxon motor ag Brünigstrasse 220 CH-6072 Sachseln

+41 41 666 15 00 www.maxongroup.com